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ABSTRACT 

The variational method of undetermined multipliers is used to derive a 

multivariate model for objective analysis. The model is intended for the 

assimilation of three-dimensional fields of rawinsonde height, temperature and 

wind and mean level temperature observed by satellite into a dynamically 

consistent data set. Relative measurement errors are taken into account. The 

dynamic equations are the two nonlinear horizontal momentum equations, the 

hydrostatic equation, and an integrated continuity equation. The model 

Euler-Lagrange equations are eleven linear and/or nonlinear partial 

differential and/or algebraic equations. A cyclical solution sequence is 

described. 

Other model features include a nonlinear terrain-following vertical 

coordinate that eliminates truncation error in the pressure gradient terms of 

the horizontal momentum equations and easily accommodates satellite observed 

mean layer temperatures in the middle and upper troposphere. A projection of 



the pressure gradient onto equivalent pressure surfaces removes most of the 

adverse impacts of the lower coordinate surface on the variational adjustment. 

An evaluation of the variational objective analysis model appears in the 

following companion paper. 

1. Introduction 

The accurate diagnosis the state of the atmosphere with data measured 

from space-based platforms requires that these data be merged with data 

collected routinely by traditional methods. Because of diversities in 

variables measured, measurement accuracy, observation location, and 

observation density, it becomes necessary to do the blending in a way that the 

final analyses is at least an approximate solution of some mathematical 

relationship between the variables. 

The creation of a multivariate data set that is consistent with the 

mathematical expressions for the behavior of air in the free atmosphere is 

more typically accomplished through some form of data assimilation coupled 

with an initialization for a numerical prediction model. Observational data is 

blended with model forecast fields through an interpolation technique 

(Cressman, 1959; Gandin, 1963; Schlatter; 1975) in which the latter, used as a 

first guess, is updated with the observations. These methods are multivariate; 

wind observations are used in the interpolative analysis of the height and 

temperature fields and vice versa. Then an initialization procedure such as 

dynamic initialization (e.g., Miyakoda and Moyer, 1968; Nitta and Hovermale, 



1969) or normal mode initialization (e.g., Baer and Tribbia, 1977; Machenhaur, 

1977; Daley, 1981) brings the hybrid data set into consistency with a 

numerical model equation set. Highly sophisticated dynamically consistent data 

assimilation schemes such as those described by McPherson, et al., (1979), 

Bengtsson, et al., (1982), Ghil, et al., (19791, Temperton (1984), and many 

others produce accurate representations of the state of the synoptic scale 

atmosphere. These hybrid data sets, though modified to be consistent with the 

scales of motion permitted by the models, also may be useful for diagnostic 

studies. 

This paper describes a nonlinear multivariate objective analysis for 

which the constrained state is defined by primitive equations. The purpose of 

this study is to achieve the dynamically constrained merger of satellite data 

with traditional data and to assess the impact of the former upon the 

analysis. The method is diagnostic. It does, however, require estimates for 

the explicitly formulated local tendencies of the velocity components and 

temperature which might be provided by a numerical model. The completed 

diagnostic scheme will contain complex mathematical constraints that are 

similar to those found in sophisticated methods for data assimilation and 

initialization of numerical models. This study focuses on the diagnostics of 

cyclone systems, including precipitation systems within cyclone systems, 

whereas many studies of numerical forecasts with mixed data sets are focused 

upon improved forecast skill. However, the completed model may eventually be 

of value in comparisons with existing data assimilations. The basic model 

(MODEL I) derived through methods of variational calculus is described herein 

and a companion paper (Achtemeier, et al., 1988) deals with an evaluation of 

the method using a case study. 



The goal of our research is the development of a variational data 

assimilation method that incorporates as dynamical constraints, the primitive 

equations for a moist, convectively unstable atmosphere and the radiative 

transfer equation. Variables that can be included in the adjusted are the 

three-dimensional vector wind, height, temperature, and moisture from 

rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite 

data. This presents a formidable mathematical problem. In order to facilitate 

thorough analysis of each of the model components, we defined four variational 

models that divide the problem naturally according to increasing complexity. 

The first variational model (MODEL I) contains the two nonlinear horizontal 

momentum equations, the integrated continuity equation, and the hydrostatic 

equation. Problems associated with an internally consistent finite difference 

method, a nonlinear hybrid terrain-following vertical coordinate, formulations 

for the pressure gradient terms, formulations for the velocity tendency terms 

and the development of a convergent solution sequence are addressed with MODEL 

I and are the subject of this paper. 

MODEL I1 contains MODEL I plus the thermodynamic equation for a dry 

adiabatic atmosphere. The introduction of this additional constraint violates 

the requirement that the number of subsidiary conditions (dynamic constraints) 

must be at least one less than the number of dependent variables (Courant, 

1936). Inclusion of the same number of constraints as dependent variables 

overdetermines the problem and a solution is not guaranteed. Therefore, we 

will design MODEL I to increase the number of dependent variables. MODEL I11 

contains MODEL I1 plus an additional moisture variable and an equation to 

describe moist adiabatic processes. MODEL IV includes MODEL I11 plus radiance 



as a dependent variable and the radiative transfer equation as a constraint. 

The next section presents the philosophy of a variational objective 

analysis model. In Section 3 appear the dynamic equations in the forms they 

enter the variational formalism as constraints. The variational equations are 

derived in Section 4 .  Details concerning the grid mesh, boundary conditions, 

and convergence of the equations are found in Section 5. Section 6 summarizes 

the model. 

2 .  A Variational Approach to Diagnostic Data Assimilation 

Our diagnostic objective analysis is an adaptation of Sasaki's ( 1 9 5 8 )  

method of variational analysis. Data from different measurement systems are 

weighted according to measurement accuracies and are blended using a least 

squares method into a hybrid data set that satisfies a set of subsidiary 

conditions. Sasaki (1970a) presented two variational formulations for the 

solution of the data assimilation problem. His "weak constraint'' formalism 

requires only a partial satisfaction of the subsidiary conditions through 

coefficients determined by the analyst. The subsidiary conditions are 

satisfied exactly through the "strong constraint'' method. Ikawa ( 1 9 8 4 )  has 

shown that the weak constraint algorithm converges to the strong constraint 

formalism as the coefficients become large. 

This study makes use of the method of undetermined multipliers (strong 

constraint formalism). The constraints are the nonlinear horizontal momentum 

equations (products of a variational principle (Wang, 198411, the hydrostatic 



equation and an integrated form of the continuity equation. The adjustments 

are carried out on fields of meteorological variables obtained through 

univariate objective interpolation. This kind of variational formulation has 

been criticized by Williamson and Daley (1983) on the grounds that the 

adjustments to the dynamic state are carried out from gridded fields rather 

than from the observations. Alternatively, observation statistics for 

different measurements of the same variable can be carried in the analyzed 

fields, perhaps as proposed by Baker (1983). Another approach would blend the 

variational analysis with a optimized successive corrections methods similar 

to that proposed by Bratseth (1986). 

Another difficulty with the method of undetermined multipliers is the 

complexity of the variational equations which stimulates a need for simpler 

methods to create hybrid, dynamically balanced data sets. Wahba and 

Wendelberger (1980) have shown that multivariate statistical objective 

analysis and variational analysis are interchangeable for linear constraints. 

Our variational method permits nonlinear constraints, allows for the physical 

interpretation of the adjustments and provides mutual adjustment between the 

mass and wind fields (Temperton, 1984). 

Accurately gridded meteorological variables are a requirement for any 

good diagnostic analysis. There are also quantities which, because of poor 

instrument accuracy or insufficient sampling frequency, cannot be measured 

directly and must be inferred through functions of other measured variables; 

in our case, they are products of the variational blending process. Among 

these are hypersensitive variables such as vertical velocity and the local 

tendencies of the horizontal velocity components, that are sensitive to small 



changes in the other variables. The variational diagnostic model must also 

produce accurate fields of these hypersensitive variables. 

Krishnamurti (1968) calculated diagnostic vertical velocities through a 

12-forcing function balance omega equation. More recently, Smith and Lin 

(1978) preferred vertical velocities diagnosed from the O'Brien (1970) 

variational method. Our variational model calculates vertical velocity from a 

generalized form of the kinematic method for which the O'Brien method can be 

shown to be a special case. 

The local tendency terms of the horizontal velocity components are 

particularly difficult to determine accurately because the coarse sampling 

frequency of operational data collection networks is not sufficient to resolve 

the frequency of meteorological disturbances. Local tendencies can be 

incorporated into the variational analysis by fixing them and assuming that 

the generated error will not appreciably contaminate the solution. But this 

ignores the fact that the tendency terms are of the same order of magnitude as 

the advection terms and that generated error undoubtedly will contaminate the 

solution, especially the error sensitive divergence calculations. Sasaki 

(1970b), Sasaki and Lewis (19701, and Lewis and Grayson (1972) have used a 

"time-wise localized" method which physically is not a time adjustment, but a 

space filter designed to adjust variables in space at a particular time such 

that the local tendency is minimized with partial constraint satisfaction. 

Achtemeier (1975) included local rates of change in a primitive equation 

variational model through a subsidiary variational formulation based upon 

O'Brien's (1970) divergence adjustment method. This method was considered a 

failure after an extensive analysis (Achtemeier, 1979) found unrealistically 



( 8 )  

large velocity component tendencies where actual velocity changes over a 12-hr 

period were small. 

More recently, Lewis (1980, 1982) has examined the problem of time 

consistency from a Lagrangian approach through the application of Thompson's 

(1969) variational method. Lewis et al., (1983) and Lewis and Derber (1985) 

combined rawinsonde data with VAS height data taken 2.5 hr later and found 

vertical velocity fields that compared favorably with space-observed cloud 

fields and surface weather reports. These studies and the results from Bloom's 

(1983) mesoscale analysis imply that variational methods can be used with some 

success in the direct determination of tendency variables, at least for 

observation frequencies on the order of 3-hr. 

3. The Formulations for the Dynamic Constraints 

The dynamic constraints, Mi, for MODEL I are the two nonlinear horizontal 

momentum equations, the hydrostatic equation, and an integrated continuity 

equation. These constraints must undergo several transformations for the 

successful solution of the variational problem with the method of undetermined 

Lagrange multipliers. The equations are nondimensionalized following the 

methodology of Charney (1948) and Haltiner (1971). These equations transform 

into a nonlinear terrain-following vertical coordinate. Another transformation 

removes a hydrostatic component introduced into lower coordinate surfaces by 

unlevel terrain and thermodynamic variables are partitioned to give reference 

and perturbation atmospheres. The reference atmosphere is dynamically 

consistent. The variational analyses are done on the perturbation variables. 

Following Shuman and Hovermale (19681, the horizontal momentum equation, 



for the u-component (eastward directed component at a reference longitude) of 

the three-dimensional vector wind, nondimensionalized in an arbitrary vertical 

coordinate and Cartesian on a conformal projection of the earth is, 

a U  aU aU aU " + 2) + Fx = 0 
(1) 

R [ - + m ( u - + v - ) + ~ - ] - v ( f + y ) + m ( - -  
o ax ax aY a0 a p  ax ax 

where conventional meteorological symbols are used. Anthes and Warner (1978) 

show that Y ,  a distortion that arises from the projection of points on a 

sphere on to a conformal surface, is at least two orders of magnitude smaller 

than f and can be neglected. The projection ratio, m, is defined for a Lambert 

conformal projection. As part of the nondimensionalization, the mapscale 

factor, m, and the Coriolis parameter, f ,  expand into m=l+RlK and f=l+RlC 
* 

where the arrays K and C are of order one and R1=0.1. 

The nondimensionalized hydrostatic equation in the generalized vertical 

coordinate is, 

a> Vertical Coordinate for the Variational Assimilation Model 

The vertical coordinate follows the concept of Phillips (1957). It blends 

from a terrain-following coordinate in the lower troposphere into a pressure 

coordinate in the middle troposphere. All horizontal variations with the lower 

coordinate surface are confined to levels below a reference pressure level p". 

This vertical coordinate has the following advantages for the variational 

assimilation model: 



(1) The dynamical equations are presented in their simplest form on the 

pressure surfaces at and above p". Coding to omit terms that are zero for 

coordinate surfaces that are surfaces of constant pressure can result in a 

substantial reduction of computational overhead. The tradeoff is that the 

equations below p" are more complex than the equations written for the linear 

sigma coordinate. However, the magnitudes of these additional terms become 

small in the sigma levels above the lower coordinate surface. 

( 2 )  All coordinate surfaces at and above pk are pressure surfaces. Vertical 

interpolation of initial fields of data, such as mean layer temperatures from 

satellite observations that function with pressure, is not required for these 

coordinate surfaces. Furthermore, there is no need to interpolate from sigma 

coordinates back to pressure coordinates in order to interpret the 

variationally adjusted fields of meteorological variables. 

( 3 )  Where coordinate surfaces are not constant pressure surfaces, the pressure 

gradient terms of the horizontal momentum equations transform into two large 

and compensating terms where there is steep, sloping terrain. The variational 

formalism will separate the pressure gradient terms and combine the large 

uncompensated terms with terms from the other equations. The large 

nonmeteorological impacts by these terms can cause significant error in the 

final solution. The nonlinear vertical coordinate eliminates this problem for 

the middle and upper troposphere (coordinate surfaces above the elevation of 

p".) A partition to reduce the impacts by these terms for layers below p" is 

the subject of section b). The smooth transition from the terrain-following to 

the pressure coordinate is accomplished by fitting two curves which are 

piecewise continuous through the second derivatives. The curve for the upper 



layer bounded by pu at the top and by p* at the bottom is given by a straight 

line subject to the boundary conditions that o=O at p=pu and that u=o" at 

p'p". This equation is 
.e. 

The equation for the nonlinear part of the hybrid vertical coordinate between 

p" and the surface pressure ps is found subject to the following four 

conditions: 

.I. 

u = 1.0 at P=Ps 

-7 u = a* 

} - = :  a*/ (P"-Pu) 
aP 

at p=p* ( 4 )  

0 .  a*, - =  J 

These four conditions specify the equation as a cubic polynomial which takes 

the form 
(P-P,) 

(P*-Pu) 
u = B (p-p*)3 + a* 

PS-PU 
B = [l- u* (- P*-P, ) 1 (PS-P*r3 

( 5 )  

Fig. 1 shows the relationship between sigma and pressure for the levels 

below the elevation of the 600 mb pressure surface for the coordinate 

parameters that have been selected for the variational assimilation. The 

reference pressure p"' is at 700 mb. A straight line from 700 mb to 1000 mb 

separates two sets of curves which describe the relationship between sigma and 

pressure for low surface pressure (high elevation) from those for high surface 

pressure. Wherever the slopes of the curves in Fig. 1 are less than the slope 



of the straight line, the pressure thicknesses between sigma coordinate 

surfaces are compacted. The smallest pressure thicknesses are found nearest 

the lower coordinate surface. These layer depths increase to approach the 

thicknesses of the pressure layers at levels above p". 

The slopes of the curves in Fig. 1 exceed the slope of the straight line 

at locations where the surface pressure is greater than 1000 mb. The pressure 

thicknesses between the sigma coordinate surfaces have been expanded. Note how 

the curve from 1100 mb converges asymptotically into the straight line by 

p=900mb. The nonlinear vertical coordinate forces most of the transition 

between terrain-following coordinate surfaces and pressure-following 

coordinate surfaces into the layer immediately above the ground. Thus 

coordinate surfaces in the lower troposphere tend to behave as pressure 

surfaces that are punctuated by areas of higher elevation. 

Fig. 2 shows the distribution of coordinate surfaces below 600 mb as the 

surface pressure varies from 800 to 1025 mb, the approximate range of surface 

pressures for the smoothed orography of the variational model. The greater 

compression of the coordinate surfaces over higher elevation nearest the 

surface is clearly evident. Notice how the nonlinear coordinate surfaces tend 

to become surfaces of constant pressure at locations away from the areas of 

high elevation. Note also the increased pressure depth of the lowest layer 

where the surface pressures exceed 1000 mb. Clearly this nonlinear vertical 

coordinate does not provide for a boundary layer of uniform thickness. 



b) Partition to Reduce Impact of Nonmeteorological Hydrostatic Terms 

Below p* where coordinate surfaces are not constant pressure surfaces, 

the pressure gradient terms of the horizontal momentum equations transform 

into two large and compensating terms where there is steep, sloping terrain. 

The variational formalism separates these pressure gradient terms and combines 

the large uncompensated terms with terms from the other equations. The impacts 

by these terms can introduce significant error into the final solution. This 

problem can by partitioning the hydrostatic equation into terrain 

terms and meteorological perturbation terms and subjecting the latter to the 

variational operation. Note that what is done is a partitioning, not a 

transformation. There is no change in the vertical coordinate. 

be avoided 

Consider the geopotential height and temperature in ( 2 )  to contain the 

"whole" signal and partition them into terrain, reference, initial, and 

adjusted variables according to, 

Furthermore, partition the whole pressure into 

Pw = PT + Pe 

where the subscript, e, identifies "equivalent" pressure surfaces as a 

distinction between the adjustable heights obtained by this method and the 

heights of the pressure surfaces from the original observations. Upon 

partitioning, the hydrostatic equation can be expressed as the sum of four 



groups of terms. These are: 

Terrain, 

Reference, 

Adjustment, 

Perturbation, 

where Y=bln(pe)/)S . Since the subscript w terms are known from the 

observations, the terrain height and its vertical gradient may be found from 

the specification of pe and requiring the terrain group to sum to zero. An 

accurate solution depends upon specification of a representative pressure for 

each layer. After some experimentation, it was found that, if the equivalent 

pressure at the top and the bottom of the layer is known, the average of the 

arithmetic mean plus twice the geometric mean, 

gives an accurate representative pressure. 

Fig. 3a shows the heights of the lower coordinate surface at 1200 GMT 10 

without partitioning of the hydrostatic equation. The figure shows April 1979 



mostly the variation of elevation. Fig, 3b shows the meteorological heights 

analyzed to the 1000 mb pressure surface. The low,about 100 mb deep over 

Colorado,is an order of magnitude smaller than the height of the smoothed 

terrain. Fig. 3c shows the heights of the 1000 mb equivalent pressure surface 

after partitioning the hydrostatic equation. The resemblance of all features 

to the heights of the actual 1000 mb surface is evident except for the higher 

central height of the low center over Colorado. The underestimation of this 

feature occurred because colder temperatures at higher elevations (the terrain 

temperature) were not partitioned. Since we have merely partitioned the 

heights, not neglected height terms, the remaining heights that make up the 

difference in the heights between Fig. 3c and Fig. 3b are spread among the 

remaining three groups of terms that make up the hydrostatic equation. 

Upon removal of the terrain height, the heights are averaged over each 

level to obtain the reference height. Then a hydrostatic reference atmosphere 

is found by requiring the reference group of terms to sum to zero. 

The residual group includes the small part of the terrain group that is 

subject to variation. These terms tend to compensate. Since the variational 

adjustments are only few tenths to one degree Kelvin, the residual terms are 

at least two orders of magnitude smaller than the comparable terrain terms and 

are one order of magnitude smaller than the perturbation terms. If the 

adjustment terms are represented by B ,  then the hydrostatic equation is given 

by * 



Once the hydrostatic equation is partitioned, the pressure gradient terms 

the impacts of the horizontal momentum equations can be partitioned to reduce 

of unlevel terrain. The partitioned pressure gradient term from (1) is, 

34 
+ rlx ax PGX = - 

where, 

is the sum of a small term subject to variation and unadjusted compensatory 

terrain terms, 

ax 

c) Partition of the Local Tendencies 

Local changes in the horizontal velocity components are caused by a 

combination of translation of existing disturbances and development. In 

partitioning the tendencies, we note that, for example, the local change in 

the u-component of the wind caused by a moving weather system is 

where c velocity of an advective or steering current (Fjortoft,l952), 

usually a smoothed middle tropospheric wind. Let u=uo+u' where uo is the 

u-component of the steady state part of the circulation and u' is the 

u-component arising from development. Then, 

is the 



du' 
C.VUO + (dt - C*VU') a U  

a t  - = -  

The first term of (19)  is the local change in u caused by translation of the 

steady state part of the weather disturbance. The second term contains the 

local change of u from development. Note that the vertical advection of u is 

considered part of development. 

The use of the advective current throughout the troposphere is valid 

because most synoptic systems tend t o  maintain vertical structure. Any changes 

in vertical structure are assumed to be the result of development. The 

variational formalism requires that the adjustments be carried out on the 

total velocity components. Therefore, we represent the local tendency of u by 

(18) .  The total derivative, an approximate developmental component, is defined 

as a new dependent variable, c,=du/dt (cv=dv/dt). 

d) Transformation of the Integrated Continuity Equation 

The mass continuity equation in generalized coordinates (Shuman and 

Hovermale, 1968) is 

The material derivative in the Lambert map projection is 

d a a a * a  
dt a t  ax aY a0 
- = - + m u -  + mv- + 0 - 

Upon expanding the map scale factor m, (20) becomes 

The last term of (22)  is determined from the nonlinear vertical coordinate 

( 5 ) .  Further, given (6) and the following definitions, 



( 2 4 )  - 3f.3 ( p - p * ) 3  + a ( P - P * ) ,  J -  

it can be shown that 

Js is obtained by substituting ps for p in ( 2 4 ) .  Including these modifications 

leads to the following form for the continuity equation, 

aU av a; . - + - + -  aa + q1 u + F = 0 ax ay 

2 au/K av/K where F = q2 Us + R K (ax + -1 
1 a Y  

The q1 and q2 arise through the nonlinearity of the coordinate transformation. 

They vanish where p>p'. 

When solved for the vertical velocity, (28)  becomes, 

where 

aU av 
ax ay H = - + - + F  

and 



The integral function, Q, is proportional to the pressure thickness of the 

sigma layers. In order to simplify the Euler-Lagrange equations derived in the 

following section, we require Q=1. This assumption removes the dependence of 

the integrated divergence on the variable pressure thickness of the sigma 

layers. Therefore, divergences in the layers near the surface over elevated 

terrain receive proportionally greater weight in the vertical velocity 

adjustment. 

e) Finite Difference Equations for the Dynamic Constraints 

Two variational models were derived with finite difference versions of 

the dynamic constraints. The first was derived with the dynamic equations 

written in uncentered differences on a uniform grid and the second was 

formulated with centered differences on a staggered grid. We sought difference 

formulations for the Euler-Lagrange equations that were symmetric about the 

central grid point. The centered difference formulation on a staggered grid 

proved most suitable from this standpoint. 

Shuman and Hovermale (1968) and Anthes and Warner (1978) define the 

horizontal finite difference operators and the finite averaging operators as 

- 
X = (,i+1/2,j - a  i-1/2,J .> / Ax 



The i is the east-west index, the j is the north-south index as measured at 

the grid origin which is located at the lower left corner of the grid. In 

addition, the vertical differences and averages are defined by 

Figure 4 shows the staggered grid developed for this model. The 

geopotential is defined at the grid intersections, v is located at the top 

and bottom and u is located at the sides of the grid square. The divergence D 

is found at the center of the grid. The layer mean temperatures T are defined 

at one half grid length above and below the grid intersections and the 

vertical velocity, 6,  is located one half grid space above and below the 

divergence. Mesinger and Arakawa (1976) have shown that phase speed and 

dispersion properties .of this staggered grid make it inferior relative to 

other grid configurations for numerical prediction. However, the grid with v 

located on the top and bottom and u located on the sides of the grid box is 

well suited for the solution sequence developed for the Euler-Lagrange 

equations in the following section. Other variables used in the variational 

analysis are collocated with the variables in Fig. 4 as follows: cV and A, at 
v, cU and A, at u, h3at D, and h9at T. 

The finite difference equations for the horizontal momentum equations 

written for the staggered grid are 



-XG xy --x -xy + iy(u- c ) Ty + ?(v- c ) 
Y Y 
- 

v + Ro Gqa] 
CY I .  

x x  M2 = Ro [Ev 

+ (l+RITy)u + (l+RIY) [@ + (AT Iln p/p,)y]  + fv = 0 
Y ' ( 3 6 )  

The analogues for the continuity and hydrostatic equations are 
- 

-q lJdu  ' [- Lh q W + R -XY K ( u x + v y )  
) + J  H!?, 2 s  1 M = ( u x + v )  d G +  (G-6 e 

3 Y 0 

-x --y 
(37) 

( 3 8 )  

-R ( U  K~ + 7 F;)] do = 0 
1 

= @ + P (an pia + (AT Rn P/PJ  = 0 
M4 u 

The four dynamic constraints are referenced, respectively, to the following 

locations: M 1  at v, M 2  at u, M 3  at D, and M4 at T on Fig. 4. 

4. Euler-Lagrange Equations 

The variational analysis melds satellite data with conventional data at 

the second stage of a two-stage objective analysis. All data are gridded 

independently in the first stage and are combined in the second stage. Future 

versions will combine the two stages. The gridded observations to be modified 

are meshed with the dynamic constraints through Sasaki's (1970a) variational 

formulation. The finite difference analog of the adjustment functional is 

- 
F = A x A y  C C a.b. I 

(39) 1 J ij i j  

The integrand Ii,j is 



The weights nil i=1,7 are Gauss' precision moduli (Whittaker and Robinson, 

1926). The gridded observations (uo, vo, Go,  Q0, To, E ~ O ,  E ~ O )  to be adjusted 

enter in a least squares formulation and receive precision modulus weights 

according to their relative observation accuracies. The strong constraints to 

be satisfied exactly are introduced through the Lagrangian multipliers hi, 

i=1,4. 

- 

Objectively modified meteorological variables are determined by requiring 

the first variation on F to vanish. A necessary condition for the existence of 

a stationary set is that the functions are determined from the domain of 

admissible functions as solutions of the Euler-Lagrange equations. The 

variation is to be carried out at every point (r,s) within the grid. Thus, 

setting the weights ai = bj = 1 and differentiating the integrand (40) with 

respect to the arbitrary variable (ar,s), the Euler-Lagrange operator in 

finite differences is 

The delta functions 6:, a i ,  equal 1 where r=i or s=j and are zero 

elsewhere. Each term in Ii,j that contains an overbar term, e.g. a,,,, 

produces a corresponding overbar term in the Euler-Lagrange equations when 

subjected to the operations specified by (41). It is convenient that the 

multiplicate overbar terms such as ar,S that appear in the nonlinear terms of 

the constraints be replaced by a,,, so that fewer gridpoints are required to 

express these terms in the Euler-Lagrange equations. 

--x 

--xY 



The Euler-Lagrange equations for u, v, and 6 result from the operations 

specified by ( 4 1 ) .  The equations are 

n1 (u-uo> - ( ~ d 7 )  x + x2 ( ~ + R ~ T Y )  + R {m -ylry -x + ~ Y x  YY 3x 0 X 2 x  
-X 

- [m ~ ~ ( v - c  '.I - R (4 X:Ya), I X 
- [m -T; (11-Cx) I x  Y '  Y 0 U 

- R~ [ o ~ E ~ ~ ) ~  + x j  TI = o 

-xY 7 
3Y 1 Y  Y 

0 nl (v-v ) - (/do) - X1 (l+Rl?) + Ro ;r" + m X 2  

-V 

- R1 [(x3xv)y + TXy] = 0 
3 Y  

2 -ya -x -xcr -y T12 ( 6 -  6") +? + Ro [Al uo + A 2  val = 0 

( 4 3 )  

( 4 4 )  

The Euler-Lagrange equations for the thermodynamic variables @ and T are 

Similarly, the operations performed for cU and cV yield 



Variation on the Lagrange multipliers restores the four original dynamic 

constraints ( 3 5 ) - ( 3 8 ) .  

Some of these Euler-Lagrange equations are complicated nonlinear partial 

differential equations for which solutions are difficult to obtain by direct 

methods. We observe, however, that the nonlinear terms are all products with 

the Rossby number or with R1. These equations may therefore be linearized and 

a solution obtained through a cyclical method as follows. Terms multiplied by 

Ro or R1 are expressed with observed variables at the first cycle, and are 

expressed by previously adjusted variables at higher cycles. At any particular 

solution cycle, these terms and the terms that are determined by observed 

variables are specified and can be treated as forcing functions. We emphasize 

that this solution method is valid only for the latitudes and scales of motion 

where the Rossby number is less than one. 

Upon linearization, the Euler-Lagrange equations for u, v, 6 ,  and @ 

become 

- ( A G )  X j X  + X 2  + F1 = 0 nlu 

- 113+ + Alx + X 2 y  + A[,, + F4 = 0 

( 4 9 )  

( 5 0 )  



Similarly, the four dynamic constraints become 

@ - v + F  = O  
X 5 

O y + u + F  6 = O  

[ (uX + vY) da  $. + Au F7 = 0 

-3 @,+yT + B  = 0 

Now these equations and ( 4 6 ) - ( 4 8 )  complete a set of eleven simple 

algebraic or linear partial differential equations. Variables may be easily 

eliminated to reduce the number of equations. Equations ( 4 9 ) ,  ( 5 0 ) ,  ( 5 3 ) ,  and 

( 5 4 )  formulated as vorticity expressions are combined to eliminate u and v. 

Equation ( 5 6 )  is combined with ( 4 6 )  to eliminate F, 

- *' ($ + . F 8  - (2 UrJ  X 4 a  Y 

where 

*4 5 =4B 
= ( - - T o  (7) 

Y Y O  F 8  

Note that both ( 5 7 )  and ( 5 8 )  contain terms that obey the identity 

-2 
( A B z ) z  = A B + A 2 2  5' 

z z  

(59 )  

Now 11, ) r2 ,  and h4 can be eliminated in and ( 5 8 ) .  This leaves a 

three-dimensional second-order partial differential equation with non-constant 

coefficients in Q; 

( 5 2 1 ,  ( 5 7 ) ,  



where 

All of the coefficients of the geopotential and its derivatives are functions 

of sums and/or derivatives of precision The coefficients of 

the three second order partial derivatives are sums of precision moduli. These 

are always positive because the precision moduli are always positive. Thus 

(61 )  must be everywhere elliptic. 

modulus weights. 

We also derive a diagnostic equation in >3. First, 

divided by n1 and reformulated as components of the divergence. 

combined into the divergence and integrated in the vertical to yield, 

( 4 9 )  and (50)  are 

Then they are 

Now 6 is eliminated from (51) and (55) and the result replaces the integrated 

divergence in ( 6 3 ) .  Application of the identity (60) to several terms of ( 6 3 )  

yields the two-dimensional second-order elliptic partial differential equation 

for h3, 



w h e r e  

The relationship between u, v, and A3 in ( 4 9 )  and (50) shows A 3  is an 

adjustment velocity potential. Equation ( 6 4 )  must be solved for the adjustment 

velocity potential. With the exception of a few small terms that contain the 

divergent part of the wind, ( 6 1 )  is a diagnostic equation for the rotational 

part of the wind. A l l  other dependent variables can be calculated once @ and 

h 3  have been determined. The solution sequence requires that the divergent 

components enter the velocity components, calculated from ( 5 3 )  and ( 5 4 ) ,  

through forcing functions that depend upon "old" data. In order for the 

divergent part of the wind to be current with the rotational part of the wind, 

the adjusted wind components are first found through (53) and ( 5 4 )  and these 

are readjusted for the divergent part of the wind. This solution method is not 

strictly rigorous, requiring an adjustment of an adjustment. Its verification 

through a case study is the subject of the accompanying paper. 

5. Computational Details 

The ten level variational assimilation model has the state variables 

staggered in both the horizontal and vertical dimensions. See Fig. 4 for the 

horizontal grid template. The variables u, v, E ~ ,  E ~ ,  and @ are located at 100 

mb intervals from the top of the domain (100 mb) to 700 mb (p"). The 

constraints MI, M2, and M3 are referenced to these surfaces. T, 6 ,  and M4 

appear at 1 5 0 - ,  250-, 350-, 450-, 550-, and 650-mb surfaces. Further, the 

- 



upper boundary on 6 is at 50 mb (&O).  Below v and the developmental 

components appear on sigma surfaces and 6 and Mq are located at the half 

levels. The first three dynamic constraints and are referenced to the 

equivalent pressure levels and the mean layer temperature is located at the 

half levels. The lower boundary for 6 (&O) is the ground. We have also chosen 

the surface observations to be representative of the average conditions of the 

lowest sigma layer. This means that the boundary layer divergence is 

representative of the mean divergence of this lowest layer. 

p", u, 

The correct number of boundary conditions are furnished by the 

variational formulation such that a unique solution is provided when natural 

and/or imposed boundary equations are satisfied (Forsythe and Wasow, 1960). 

Natural boundary conditions are derived from the constraints as numerical 

expressions to be solved. However, because the MODEL I dynamic constraints 

produce complex boundary conditions, we use imposed boundary conditions and 

specify the dependent variables on the boundaries. The requirements of the 

solution method for MODEL I are that boundary conditions be specified for the 

geopotential and adjustment velocity potential diagnostic equations, the 

remaining equations in the adjustment cycle, and the vertical velocity. In 

addition,. special boundary conditions are imposed by the cyclic solution 

sequence. Details of the various boundary conditions follow. 

a) Boundary Conditions on the Geopotential Adjustment 

Imposed boundary conditions for the geopotential adjustment equation (61 )  

are supplied by the gridded fields of the observed meteorological component of 

the partitioned height field. The top boundary is provided by the analysis at 
L- ~ 



( 2 9 )  

100 mb. 

onto equivalent pressure surfaces. 

The lower boundary is the meteorological height component transformed 

b) Boundary Conditions on the Velocity Adjustment Potential 

Lateral boundary conditions are required for the adjustment velocity 

potential equation (64) .  It is well known that the specification of boundary 

conditions on the velocity potential determines the structural details of the 

recovered wind field to some degree (Hawkins and Rosenthal, 1965). 

Furthermore, there appears to be no method of uniquely specifying the boundary 

conditions (Shukla and Saha, 1974; Eskridge, 1977; Liu, 1977, Stephens and 

Johnson, 1978). Dirichlet boundary conditions force all of the divergence 

adjustment into the v-component along the x-boundaries and into the 

u-component along the y-boundaries. Neumann boundary conditions force the 

adjustment into the u-component along the x-boundaries and into the 

v-component along the y-boundaries. We used Dirichlet conditions and set 

the adjustment velocity potential equal to zero on all boundaries. This choice 

for boundary conditions left the divergent part of the wind unadjusted at the 

boundaries . 

c) Boundary Conditions on the Vertical Velocity 

The boundary conditions on 6 are &O at the ground and at 50 mb. Because 

the lower coordinate surface slopes with the underlying terrain, there may 

exist vertical velocity near the ground. Given as Ws=dps/dt, the surface 

vertical velocity is a combination of flow over elevated terrain and through 

evolving meteorological pressure fields. Upon partitioning into terrain and 



meteorological components, the surface vertical velocity is 

+ - + V'VP,) w = - ( V * 7 p ,  a t  S 

Scale analysis of the terms of (65) showed the first term in parentheses to be 

at least an order of magnitude larger than the meteorological terms. We 

therefore approximated the surface vertical velocity with the first term. 

d) Boundary Conditions on the Remaining Variables 

Horizontal boundary conditions are not required to determine the 

remaining variables in the interior of the analysis domain. However, boundary 

values of these variables are required in order to calculate horizontal 

derivatives for the forcing functions in subsequent solution cycles. Interior 

fields are extrapolated across the boundaries by using an approximation that 

is the sum of a locally averaged curvature with one half of a locally averaged 

gradient. This method provides boundaries that are compatible with the 

adjusted fields; they: are generated, however, to eliminate boundary 

discontinuities, and do not satisfy the dynamic equations. 

e) Boundary Conditions Required by the Cyclic Solution Method 

Initial tests of the variational assimilation model with the case study 

described in the following article (Achtemeier, 1988) revealed local 

violations of linear stability along the lateral boundaries. These 

instabilities spread into the interior of the model domain with successive 

cycles. The adjustment of the geopotential height field (61) is forced to take 

on the gridded values of the observed geopotential at the boundaries 

et al., 



( 3 1 )  

regardless of the relative weights ascribed to the other variables. Small 

perturbations in the heights near the boundaries are frozen into the 

geopotential adjustment and cause the instabilities. We were unable to totally 

eliminate the perturbations but were able to eliminate the buildup of the 

undesired waves by requiring variational analysis to satisfy the geostrophic, 

hydrostatic equations near the boundaries. These solutions grade into the 

solutions for the full nonlinear dynamic equations at five grid spaces into 

the grid interior. 

f) Convergence Criteria 

The convergence criteria for the general second-order partial 

differential equation with nonconstant coefficients, 

+ dXx + eX t fha - gX + h + bX + cXuu = 0 
Y aXxx YY 

obtained by the partial wave technique is 

a + ? + - + ? )  b C f3 2 > ( E + - + - )  d e  f 2  
(7 2 Ay Aa Ax Ay Aa 

The coefficients a, b, c, and g in the geopotential adjustment equation are 

always positive. Further, the coefficient d is just the horizontal derivative 

of a, e is the horizontal derivative of b, and f is the vertical derivative of 

c. The most stringent convergence requirement is that the absolute magnitude 

of the derivative of a coefficient not exceed the value of the coefficient. 

This requirement can be easily satisfied through the definitions of the 

precision modulus weights. The coefficients of the adjustment velocity 

potential are similarly related except that c=f=O. 



Convergence of the cyclic solution sequence for MODEL I is assured for 

the latitudes and scales of motion where the Rossby number is less than one. 

When the Rossby number exceeds one, the adjustment terms in the forcing 

functions approach or exceed the .magnitudes of the variables being solved for, 

a condition that favors the development of linear instability. A determination 

of the limits of convergence MODEL I is the subject of continuing research. 

6 .  Some Concluding Remarks 

We have presented an outline of the first of four variational 

assimilation models that will meld data collected from rawinsonde (wind, 

temperature, height, moisture) with data collected from space-based platforms 

(cloud wind vectors, moisture, mean-layer temperatures). This method is, by 

design, independent of numerical prediction models. The first model, MODEL I, 

incorporates as dynamical constraints, the two nonlinear horizontal momentum 

equations, the hydrostatic equation, and an integrated continuity equation. 

The vertical coordinate minimizes the interpolation from pressure to 

terrain-following coordinates, more easily accommodating mean-layer 

temperature data observed by satellite in the middle and upper troposphere, 

and decreases truncation error associated with the pressure gradient force in 

the horizontal momentum equations. Reformulations for the horizontal 

tendencies of u and v are designed to increase the accuracy of the variational 

analysis for these hypersensitive quantities. 

We designed a cyclical solution sequence that linearizes the eleven 

Euler-Lagrange equations that comprise MODEL I as functions of the Rossby 



number. This solution method does not exclude ageostrophic motion, it only 

requires that the Rossby number be less than one. A potential problem in the 

calculation of the adjusted velocity components is that this solution method 

is not strictly rigorous, requiring an adjustment of an adjustment. Its 

verification through a case study is the subject of the following paper 

(Achtemeier et al., 1988). 

Acknowledgements 

This research was supported by the National Aeronautics and Space 

Administration (NASA) under contract NAS8-34902 and grant NAG8-059. We 

gratefully acknowledge Mrs. Julia Chen for her monumental programming effort. 



REFERENCES 

Achtemeier, G. L., 1975: On the Initialization problem: A variational 
adjustment method. Mon. Wea. Rev., 103, 1090-1103. 

, 1979: Evaluation of a variational initialization method. 
Preprints, 4th Conf. Num. Wea. Pred., her. Meteor. SOC. 1979, 1-8. 

, S .  Q. Kidder and R. W. Scott, 1988: A multivariate variational 
objective analysis - assimilation method, Part 11: Case study results 
with and without satellite data. (Submitted to Tellus) 

Anthes, R. A., and T. T. Warner, 1978: Development of hydrodynamic models 
suitable for air pollution and other mesometeorological studies. Mon. 
Wea. Rev., 106, 1045-1078. 

Baer, F., and J. Tribbia, 1977: On complete filtering of gravity modes through 
nonlinear initialization. Mon. Wea. Rev., 105, 1536-1539. 

Baker, W. E., 1983: Objective analysis and assimilation of observational data 
from FGGE. Mon. Wea. Rev., 111, 328-342. 

Bengtsson, L., M. Kanamitsu, P. Kallberg and S. Uppala, 1982: FGGE 
4-dimensional data assimilation at ECMWF. Bull. Amer. Meteor. SOC., 63, 
29-43. 

Bloom, S. C., 1983: The use of dynamical constraints in the analysis of 
mesoscale rawinsonde data. Tellus, 35, 363-378. 

Bratseth, A. M., 1986: Statistical interpolation by means of successive 
corrections. Tellus, 38A, 439-447. 

Charney, J. G., 1948: On the scale of atmospheric motion. Geofys. Publikas., 
17, 1-17. 

Courant, R., 1936: Differential and Integral Calculus, Vol. 2, (E. J. McShane, 
translator), Wiley - Interscience, p198. 

Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. 
Rev., 87, 367-374. 

Daley, R., 1981: Normal mode initialization. Reviews of Geophysics and Space 
Physics, 19, 450-468. 

Eskridge, R. E., 1977: Comments on "An iterative algorithm for objective wind 
field analysis." Mon. Wea. Rev., 105, 1066. 

Fjortoft, R., 1952: On a numerical method of integrating the barotropic 
vorticity equation. Tellus, 4 ,  179-194. 

Forsythe, G. E., and W. R. Wasow, 1960: Finite Difference Methods for Partial 
Differential Equations. New York, John Wiley and Sons. 



Gandin, L. S., 1963: Objective analysis of meteorological fields. Isdat., 
Leningrad. [Israel Program for Scientific Translations, Jerusalem, 1965, 
242 pp. I 

Ghil, M., M. Halem and R. Atlas, 1979: Time-continuous assimilation of 
remote-sounding data and its effect on weather forecasting. Mon. Wea. 
Rev., 107, 140-171. 

Haltiner, G. J., 1971: Numerical Weather Prediction, Wiley and Sons, USA, 
46-61. 

Hawkins, H. F., and S. L. Rosenthal, 1965: On the computation of stream 
functions from the wind field. Mon. Wea. Rev., 93, 245-252. 

Ikawa, M., 1984: An alternative method of solving weak constraint problem and 
a unified expression of weak and strong constraints in variational 
objective analysis. Pap. Meteor. & Geophys., 35, 71-80. 

Krishnamurti, T. N., 1968: A diagnostic balance model for studies of weather 
systems of low and high latitudes. Rossby number less than one. Mon. Wea. 
Rev., 96, 197-207. 

Lewis, J. M., 1980: Dynamical adjustment of 500 mb vorticity using P.D. 
Thompson's scheme - a case study. Tellus, 32, 511-514. 

, and J. C. Derber, 1985: The use of adjoint equations to solve a 
variational adjustment problem with advective constraints. Tellus, 37A, 
309-322. 

, 1982: Adaptation of P.D. Thompson's scheme to the constraint of 
potential vorticity conservation. Mon. Wea. Rev., 110, 1618-1634. 

, and T.H. Grayson, 1972: The adjustment of surface wind and 
pressure by Sasaki's variational matching technique. J. Appl. Meteor., 
11, 586-597. 

, C. M. Hayden and A. J. Schreiner, 1983: Adjustment of VAS and M O B  
geopotential analysis using quasi-geostrophic constraints. Mon. Wea. 
Rev., 111, 2058-2067. 

Liu, C. Y., 1977: Reply. Mon. Wea. Rev., 105, 1067. 

Machenhaur, B., 1977: On the dynamics of gravity oscillations in a shallow 
water model, with applications to normal mode initialization. Beitr. 
Phys. Atmos., 50, 253-271. 

McPherson, R. D., K. H. Bergman, R. E. Kistler, G. E. Rasch, and D. S. Gorden, 
1979: The NMC operational global data assimilation system. Mon. Wea. 
Rev., 107, 1445-1461. 

Mesinger, F., and A. Arakawa, 1976: Numerical methods used in atmospheric 
models. Vol. 1, GARP Publications Series No. 17, p47. 

Miyakoda, K., and R. M. Moyer, 1968: A method of initialization for dynamical 



weather forecasting. Tellus, 20, 115-130. 

Nitta, T., and J. B. Hovermale, 1969: A technique of objective analysis and 
initialization for the primitive forecast equations. Mon. Wea. Rev., 97, 
652-658. 

O'Brien, J. J., 1970: Alternative solutions to the classical vertical velocity 
problem. J. Appl. Meteor., 9, 197-203. 

Phillips, N. A., 1957: A coordinate system having some special advantages for 
numerical forecasting. J. Meteor., 14, 184-195. 

Sasaki, Y., 1958: An objective analysis based upon the variational method. J. 
Meteor. SOC. Japan, 36, 77-88. 

, 1970a: Some basic formalisms in numerical variational analysis. 
Mon. Wea. Rev., 98, 875-883. 

, 1970b: Numerical variational analysis formulated under the 
constraints as determined by longwave equations and a low-pass filter. 
Mon. Wea. Rev., 98, 884-898. 

, and Lewis, J., 1970: Numerical variational analysis of the 
planetary boundary layer in conjunction with squall line formation. J. 
Meteor. SOC. Japan, 48, 381-398. 

Schlatter, T. W., 1975: Some experiments with a multivariate statistical 
objective analysis scheme. Mon. Wea. Rev., 103, 246-257. 

Shukla, J., and K. R. Saha, 1974: Computation of non-divergence streamfunction 
and irrotational velocity potential from the observed winds. Mon. Wea. 
Rev., 102, 419-425. 

Shuman, F., and J. B. Hovermale, 1968: An operational six-layer primitive 
equation model. J. Appl. Meteor., 7, 525-547. 

Smith P. J., and C. P. Lin, 1978: A comparison of synoptic scale vertical 
motions computed by the kinematic method and two forms of the omega 
equation. Mon. Wea. Rev., 106, 1687-1694. 

Stephens, J. J., and K. W. Johnson, 1978: Rotational and divergent wind 
potentials. Mon. Wea. Rev., 106, 1452-1457. 

Temperton, C., 1984: Variational normal mode initialization for a multilevel 
model. Mon. Wea. Rev., 112, 2303-2316. 

Thompson, P. D., 1969: Reduction of analysis error through constraints of 
dynamical consistency. J. Appl. Meteor., 9, 738-742. 

Wahba, G., and J. Wendelberger, 1980: Some new mathematical methods for 
variational objective analysis using splines and cross validation. Mon. 
Wea. Rev., 108, 1122-1143. 

Wang, P. K., 1984: A brief review of the Eulerian variational principle for 



atmospheric motions in rotating coordinates. Atmos.-Ocean, 22, 387-392. 

Whittaker, E., and G. Robinson, 1926: The Calculus of Observations (2nd 
Edition). London, Blackie and Son, LTD., p176. 

Williamson, D. L., and R. Daley, 1983: An iterative analysis initialization 
technique. Mon. Wea. Rev., 111, 1517-1536. 



Figure Captions 

Figure 1. The relationship between sigma and pressure for the levels below the 
elevation of the 600 mb pressure surface for the coordinate parameters 
that have been selected for the variational objective analysis. 

Figure 2 .  The distribution of hybrid coordinate surfaces below 600 mb as the 
surface pressure varies from 800 to 1025 mb. 

Figure 3 .  Heights at the lower coordinate surface for a) nonpartitioned 
terrain-following coordinate, b) the 1000 mb pressure surface, and c) the 
equivalent pressure surface. 

Figure 4 .  A portion of the staggered grid used for the variational diagnostic 
model. 
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